69 research outputs found

    Immunity to the Dual Threat of Silica Exposure and Mycobacterium tuberculosis

    Get PDF
    Exposure to silica and the consequent development of silicosis are well-known health problems in countries with mining and other dust producing industries. Apart from its direct fibrotic effect on lung tissue, chronic and immunomodulatory character of silica causes susceptibility to tuberculosis (TB) leading to a significantly higher TB incidence in silica-exposed populations. The presence of silica particles in the lung and silicosis may facilitate initiation of tuberculous infection and progression to active TB, and exacerbate the course and outcome of TB, including prognosis and survival. However, the exact mechanisms of the involvement of silica in the pathological processes during mycobacterial infection are not yet fully understood. In this review, we focus on the host's immunological response to both silica and Mycobacterium tuberculosis, on agents of innate and adaptive immunity, and particularly on silica-induced immunological modifications in co-exposure that influence disease pathogenesis. We review what is known about the impact of silica and Mycobacterium tuberculosis or their co-exposure on the host's immune system, especially an impact that goes beyond an exclusive focus on macrophages as the first line of the defense. In both silicosis and TB, acquired immunity plays a major role in the restriction and/or elimination of pathogenic agents. Further research is needed to determine the effects of silica in adaptive immunity and in the pathogenesis of TB

    The limits of testing particle-mediated oxidative stress in vitro in predicting diverse pathologies; relevance for testing of nanoparticles

    Get PDF
    In vitro studies with particles are a major staple of particle toxicology, generally used to investigate mechanisms and better understand the molecular events underlying cellular effects. However, there is ethical and financial pressure in nanotoxicology, the new sub-specialty of particle toxicology, to avoid using animals. Therefore an increasing amount of studies are being published using in vitro approaches and such studies require careful interpretation. We point out here that 3 different conventional pathogenic particle types, PM10, asbestos and quartz, which cause diverse pathological effects, have been reported to cause very similar oxidative stress effects in cells in culture. We discuss the likely explanation and implications of this apparent paradox, and its relevance for testing in nanotoxicology

    Attenuation of oxidative stress in U937 cells by polyphenolic-rich bark fractions of Burkea africana and Syzygium cordatum

    Get PDF
    BACKGROUND: Oxidative stress has been implicated in the progression of various diseases, which may result in the depletion of endogenous antioxidants. Exogenous supplementation with antioxidants could result in increased protection against oxidative stress. As concerns have been raised regarding synthetic antioxidant usage, the identification of alternative treatments is justified. The aim of the present study was to determine the antioxidant efficacy of Burkea africana and Syzygium cordatum bark extracts in an in vitro oxidative stress model. METHODS: Cytotoxicity of crude aqueous and methanolic extracts, as well as polyphenolic-rich fractions, was determined in C2C12 myoblasts, 3T3-L1 pre-adipocytes, normal human dermal fibroblasts and U937 macrophagelike cells using the neutral red uptake assay. Polyphenolic content was determined using the Folin-Ciocalteau and aluminium trichloride assays, and antioxidant activity using the Trolox Equivalence Antioxidant Capacity and DPPH assays. The extracts efficacy against oxidative stress in AAPH-exposed U937 cells was assessed with regards to reactive oxygen species generation, cytotoxicity, apoptosis, lipid peroxidation and reduced glutathione depletion. RESULTS: B. africana and S. cordatum showed enrichment of polyphenols from the aqueous extract, to methanolic extract, to polyphenolic-rich fractions. Antioxidant activity followed the same trend, which correlated well with the increased concentration of polyphenols, and was between two- to three-fold stronger than the Trolox antioxidant control. Both plants had superior activity compared to ascorbic acid in the DPPH assay. Polyphenolic-rich fractions were most toxic to the 3T3-L1 (IC50’s between 13 and 21 μg/ml) and C2C12 (IC50’s approximately 25 μg/ml) cell lines, but were not cytotoxic in the U937 and normal human dermal fibroblasts cultures. Free radical-induced generation of reactive oxygen species (up to 80%), cytotoxicity (up to 20%), lipid peroxidation (up to 200%) and apoptosis (up to 60%) was successfully reduced by crude extracts of B. africana and the polyphenolic-rich fractions of both plants. The crude extracts of S. cordatum were not as effective in reducing cytotoxic parameters. CONCLUSION: Although oxidative stress was attenuated in U937 cells, cytotoxicity was observed in the 3T3-L1 and C2C12 cell lines. Further isolation and purification of polyphenolic-fractions could increase the potential use of these extracts as supplements by decreasing cytotoxicity and maintaining antioxidant quality.The National Research Foundationhttp://www.biomedcentral.com/1472-6882/13/116am201

    In vitro effect of N-acetylcysteine on hepatocyte injury caused by dichlorodiphenyltrichloroethane and its metabolites

    Get PDF
    The organochlorine pesticide, dichlorodiphenyltrichloroethane (DDT), is still used to combat the spread of malaria in several developing countries despite its accumulation and known hepatotoxic effects that have been demonstrated both in vitro and in vivo. N-Acetylcysteine (NAC) is a recognized hepatoprotective agent that has been reported to reduce hepatotoxicity initiated by many different compounds. The aim of this study was to determine whether NAC could counter in vitro hepatocyte injury induced by DDT or its two major metabolites, dichlorodiphenyldichloroethylene and dichlorodiphenyldichloroethane. HepG2 cell cultures were used to assess the following parameters of toxicity: cellular viability, intracellular levels of reactive oxygen species (ROS), mitochondrial membrane potential and initiation of apoptosis. None of the three test compounds induced ROS generation, yet exposure to any of the three compounds produced mitochondrial hyperpolarization, which was countered by NAC pretreatment. All three test compounds also induced apoptotic cell death, which was inhibited by NAC. Despite NAC counteracting some adverse intracellular changes due to organochlorine exposure, it appeared to aggravate the cytotoxic effects of the organochlorine compounds at low test concentrations. As the same outcome may also occur in vivo, results from the present study raise concern about the use of NAC as treatment for DDT-induced hepatotoxicity.National Research Foundation of South Africa [FA2007041600014].http://het.sagepub.com/hb2013ay201

    Evaluation of the phenolic and flavonoid contents and radical scavenging activity of three southern African medicinal plants

    Get PDF
    Warburgia salutaris (Bertol. F.) Chiovs, Rhoicissus tridentata (L.f.) Wild & Drum and Terminalia sericea (Burch. ex DC.), are widely used medicinal plants in southern Africa. The aim of the study was to determine the phenolic and flavonoid content and evaluate the antioxidant activity of the three medicinal plants. Total phenolic and flavonoid contents were determined spectrophotometrically as gallic acid and rutin equivalents, respectively. Individual phenolic acids were identified by means of gas chromatography-mass spectrometry. Antioxidant activities of the crude extracts were assessed using the TEAC assay. The highest phenolic content was detected in the crude methanol extract of the bark of W. salutaris and the highest flavonoid content was found in the crude methanol extract of the leaves of this plant. In all the studied plants the alkaline hydrolysable fraction yielded a greater variety of phenolic acids compared to the soluble/free phenolic acid fractions. The three medicinal plants investigated were found to be strong radical scavengers supporting the traditional use of these medicinal plants.The Gauteng Department of Health and the National Research Foundation in South Africa.http://www.academicjournals.org/AJPPam201

    Mechanisms facilitating the uptake of carboxyl-polythene glycol-functionalized gold nanoparticles into multicellular spheroids

    Get PDF
    OBJECTIVES : Nanomedicines represent theragnostic alternatives to traditional candidate drugs, with increased targeting and delivery potential due to their size and functional tailorability. Biological activity typically relies on nanomaterials permeating into the intracellular environment, necessitating characterization of uptake and intracellular trafficking pathways. Spheroids' three-dimensional architecture and heterogenous cellular distribution offer an in-vivo-representative platform to assess the biological activity of nanoparticles (NPs). This study aimed to develop an A549 alveolar carcinoma spheroid model as a NP uptake assessment platform for carboxyl-polythene glycol-functionalized gold NPs affording further biological characterization opportunities in nanomedicine. METHODS : A549 spheroids were generated via the liquid overlay method, and their morphology and viability were assessed for 21 days. Cytotoxicity was assessed via lactate dehydrogenase release. NP uptake was elucidated using uptake pathway inhibition, combined with CytoViva hyperspectral imaging of sectioned spheroids to count internalized NPs. KEY FINDINGS : Cytotoxicity was absent for all exposure groups. Clathrin-mediated endocytosis was the primary endocytic mechanism (33.5-54.8% of uptake), which may precede lysosomal degradation. Lysosomal membrane permeabilization appears to be a potential downstream application. Low penetration into spheroids (4.5 μm) suggests the failure of NPs to traverse cellular layers in the spheroid. CONCLUSIONS : Although poor uptake was observed, a multicellular spheroid model of A549 alveolar carcinoma cells was established, allowing for similar future uptake assessment of various NPs.The National Research Foundation (NRF), as part of Brazil, Russia, India, China, South Africa (BRICS) Multilateral Joint Science and Technology Research Collaboration Programme.https://academic.oup.com/jpphj2023Pharmacolog

    Transcriptomics in Toxicogenomics, Part I: Experimental Design, Technologies, Publicly Available Data, and Regulatory Aspects

    Get PDF
    The starting point of successful hazard assessment is the generation of unbiased and trustworthy data. Conventional toxicity testing deals with extensive observations of phenotypic endpoints in vivo and complementing in vitro models. The increasing development of novel materials and chemical compounds dictates the need for a better understanding of the molecular changes occurring in exposed biological systems. Transcriptomics enables the exploration of organisms’ responses to environmental, chemical, and physical agents by observing the molecular alterations in more detail. Toxicogenomics integrates classical toxicology with omics assays, thus allowing the characterization of the mechanism of action (MOA) of chemical compounds, novel small molecules, and engineered nanomaterials (ENMs). Lack of standardization in data generation and analysis currently hampers the full exploitation of toxicogenomics-based evidence in risk assessment. To fill this gap, TGx methods need to take into account appropriate experimental design and possible pitfalls in the transcriptomic analyses as well as data generation and sharing that adhere to the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. In this review, we summarize the recent advancements in the design and analysis of DNA microarray, RNA sequencing (RNA-Seq), and single-cell RNA-Seq (scRNA-Seq) data. We provide guidelines on exposure time, dose and complex endpoint selection, sample quality considerations and sample randomization. Furthermore, we summarize publicly available data resources and highlight applications of TGx data to understand and predict chemical toxicity potential. Additionally, we discuss the efforts to implement TGx into regulatory decision making to promote alternative methods for risk assessment and to support the 3R (reduction, refinement, and replacement) concept. This review is the first part of a three-article series on Transcriptomics in Toxicogenomics. These initial considerations on Experimental Design, Technologies, Publicly Available Data, Regulatory Aspects, are the starting point for further rigorous and reliable data preprocessing and modeling, described in the second and third part of the review series

    Transcriptomics in Toxicogenomics, Part II : Preprocessing and Differential Expression Analysis for High Quality Data

    Get PDF
    Preprocessing of transcriptomics data plays a pivotal role in the development of toxicogenomics-driven tools for chemical toxicity assessment. The generation and exploitation of large volumes of molecular profiles, following an appropriate experimental design, allows the employment of toxicogenomics (TGx) approaches for a thorough characterisation of the mechanism of action (MOA) of different compounds. To date, a plethora of data preprocessing methodologies have been suggested. However, in most cases, building the optimal analytical workflow is not straightforward. A careful selection of the right tools must be carried out, since it will affect the downstream analyses and modelling approaches. Transcriptomics data preprocessing spans across multiple steps such as quality check, filtering, normalization, batch effect detection and correction. Currently, there is a lack of standard guidelines for data preprocessing in the TGx field. Defining the optimal tools and procedures to be employed in the transcriptomics data preprocessing will lead to the generation of homogeneous and unbiased data, allowing the development of more reliable, robust and accurate predictive models. In this review, we outline methods for the preprocessing of three main transcriptomic technologies including microarray, bulk RNA-Sequencing (RNA-Seq), and single cell RNA-Sequencing (scRNA-Seq). Moreover, we discuss the most common methods for the identification of differentially expressed genes and to perform a functional enrichment analysis. This review is the second part of a three-article series on Transcriptomics in Toxicogenomics.Peer reviewe

    Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment

    Get PDF
    Transcriptomics data are relevant to address a number of challenges in Toxicogenomics (TGx). After careful planning of exposure conditions and data preprocessing, the TGx data can be used in predictive toxicology, where more advanced modelling techniques are applied. The large volume of molecular profiles produced by omics-based technologies allows the development and application of artificial intelligence (AI) methods in TGx. Indeed, the publicly available omics datasets are constantly increasing together with a plethora of different methods that are made available to facilitate their analysis, interpretation and the generation of accurate and stable predictive models. In this review, we present the state-of-the-art of data modelling applied to transcriptomics data in TGx. We show how the benchmark dose (BMD) analysis can be applied to TGx data. We review read across and adverse outcome pathways (AOP) modelling methodologies. We discuss how network-based approaches can be successfully employed to clarify the mechanism of action (MOA) or specific biomarkers of exposure. We also describe the main AI methodologies applied to TGx data to create predictive classification and regression models and we address current challenges. Finally, we present a short description of deep learning (DL) and data integration methodologies applied in these contexts. Modelling of TGx data represents a valuable tool for more accurate chemical safety assessment. This review is the third part of a three-article series on Transcriptomics in Toxicogenomics
    corecore